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quantum coherence of domain walls in magnetic insulators 
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British Columbia, Canada, VET 1Z1 
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Abstract Results are presented of a numerical calculation of the tunnelling gap for a domain 
wall moving in the double-well potential of a pair of voids in a ma@c insulator. Both 
symmetric and asymmetric double-well potentials are considered. It is found that the pmpect 
for observing domain wall quantum coherence on a mesoscopic or macroscopic scale appears 
highly unlikely. 

1. Introduction 

There has been a great deal of interest recently in the prospect that magnetic systems might 
provide a new setting in which to observe a macroscopic degree of freedom behaving 
quadtum mechanically [l]. To date, the magnetic systems considered are (i) magnetic 
grains [Z, 3, 4, 5, 61 and (6) solitons in magnetic systems @articularly 180" Bloch walls) 
[l, 7, 8, 9, 10, 111. Attention has focused on macroscopic quantum tunnelling since 
the conditions necessary for its observation appear the most favourable [12]. Arguably, 
of more fundamental interest is macroscopic quantum coherence (MQC) because of its 
connections with quantum measurement theory [13]. In MQC the macroscopic object tunnels 
periodically through the central banier of a double-well potential (DW). This effect is a 
direct consequence of the quantum state of the object being in a coherent linear superposition 
of macroscopically distinguishable states, and it is this aspect of MQC that connects it to the 
Schrtidinger cat paradox [I41 and to quantum measurement theory. 

In this paper we will examine quantum coherence (QC) for a 180" Bloch wall (we 
suppress the '180"' below) moving in the double-well potential due to a pair of voids 
present in a uniaxial magnetic insulator with quality factor Q = K / 2 z M 2  >> 1 (K = 
magnetic anisotropy constant, M = spontaneous magnetization) at T = 0 [15]. Because 
of the restriction on Q, demagnetization effects are small so that the voids will not alter 
significantly the Bloch wall configuration of the magnetization (see appendix A). It is well 
known that dissipative effects on domain walls in magnetic insulators are weak as long as 
kBT << A0 (A0 is the bulk magnon gap). Thus our system, under the conditions assumed, 
is expected to have weak dissipation which allows an iterative approach to treating the 
effects of dissipation. At stage 1 of the calculation, we do not include the effects of 
dissipation and go ahead and calculate the tunnelling gap. From this we study the nature of 
quantum coherence in the case where only non-dissipative couplings to the environment are 
considered. Qualitatively, there are only two results possible at the end of stage 1, either (i) 
the natures of the non-dissipative couplings are such that macroscopic quantum coherence is 
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possible or (ii) they are such that macroscopic quantum coherence is not possible. If case (i) 
is found at the end of stage 1, then we must go on to stage 2 of the calculation and include 
the effects of dissipation to see how such effects influence the nature of the macroscopic 
quantum coherence. This could be done along the lines of the work of Leggett etal [16]. 
As the principle source of dissipation at these temperatures for a domain wall in a magnetic 
insulator is due tp magnons [8] (though see [17]), which produce ohmic dissipation with 
1y << 1 (at the temperatures considered), it is expected that dissipation would lead to damped 
oscillations (damped quantum coherence) for zero or very weak bias. One would then have 
to re-exapine the effects of the non-dissipative couplings to the environment to fully assess 
the effects of the environment on macroscopic quantum coherence. If instead, case (ii) is 
found at the end of stage 1, then macroscopic quantum coherence is already destroyed by 
non-dissipative effects. As shown by Leggett and co-workers, dissipative effects (depending 
on the details of the dissipative couplings) will either destroy the oscillations (that are 
quantum coherent), or else damp them. Thus, if case (ii) is found at the end of stage 1, the 
iteration can cease and the calculation is complete as including dissipation at stage 2 will 
not restore quantum coherence. As we will see below, the result of stage 1 of this iterative 
calculation is case ($-macroscopic quantum coherence is desimyed by non-dissipative 
effects. Thus it is unnecessary to cany out stage 2 of the calculation as dissipation will not 
act to restore macroscopic quantum coherence. Thus we want to stress that although the 
numerical calculation to be presented below does not include dissipation, the nature of the 
results obtained (i.e. quantum coherence is destroyed by non-dissipative effects) are such 
that including dissipative effects will not alter our conclusion. In fact, such effects will act 
to strengthen our result. 

Below we calculate numerically the ground- (first-excited-) state energy EO ( E l )  (from 
which the tunnelling gap is A0 = E1 - Eo) for: (i) identical voids Leading to a symmetric 
double-well potential for various wall sizes N (the number of spins in the wall) and void 
separations L; and (ii) non-identical voids leading to an asymmetric doublewell potential 
for varying degrees of asymmetry (for a pmicular choice of N and L). We find that 
observation of quantum coherence on either a macroscopic or mesoscopic scale appears 
unlikely. For macroscopic Qc (N 2 1@), weak stray magnetic fields introduce a bias into 
the gap which masks A0 except for void separations very close to the value at which the 
central barrier disappears. At these separations, &e tunnelling gap varies on a length scale 
that is less than the coarse-graining length scale. One would expect that the experimentally 
relevant gap would be a coarsegrained average which is seen to be less than the bias 
and so unobservable. For mesoscopic QC ( N  N 1@-1@), although the bias introduced 
by a stray magnetic field is quite small, the slightest degree of asymmetry in the voids 
is sufficient to pin the wall to the larger of the two voids. The difficulty here is that an 
adequately large tunnelling gap requires a very small central banier which is destroyed by 
the slightest difference in the voids. For spherical voids, we find that pinning of the wall 
can be avoided only when the difference in the radii is much less than the coarse-graining 
length scale. Averaging the effects of asymmetry over the coarse-graining length scale leads 
one to conclude that a real mesoscopic wall will likely be pinned by asymmetry. Thus even 
in the dissipationless approximation, one expects that observation of quantum coherence on 
any scale larger than microscopic appears unlikely due to the severe tolerances imposed 
on the experimental situation. As discussed above, given the nature of this result, it is 
unnecessary to extend the calculation to include dissipative effects as they will not act to 
restore QC. 

The organization of this paper is as follows. Section 2 is concerned with issues that lead 
us to the Hamiltonian we will use to examine domain wall QC. In section 3 we describe the 
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numerical calculation and in the following section we present our results and tJleir analysis. 
In section 5 we summarize what h e  been found and make closing remarks. TWO appendices 
are included in which (i) the effect of a void (in the magnetic insulator) on the Bloch wall 
structure is examined (appendix A) and (ii) a derivation of the pinning potential is given 
(appendix B). 

2. Preliminaries 

The system of interest is a magnetic insulator which is a lattice of spins (with lattice 
constad lo) coupled to each other via the exchange and dipole-dipole interactions, and to 
the underlying lattice via the anisotropy interaction which is assumed to be uniaxial with 
easy axis along 2. For the length scales of interest to us (see appendix A for a more 
detailed discussion) the lattice system can be coarse-grained so that @e magnetic state of 
the system is described by a magnetization M(z ,  t) defined on a 3D spatial continuum. The 
total static energy in the absence of an external magnetic field is the sum of the exchange, 
anisotropy and demagnetization energies. A stationary Bloch wall is a soliton configuration 
of the magnetization M(z)  with vanishing demagnetization energy, subject to the boundary 
condition M ( y  -+ fw) = fM2 (see figure 1). The spatial variation of the wall is localized 
to a planar (flat) region of thickness A = ( J  = exchange stiffness constant) which 
is assumed to be parallel to the xz-plane. The wall coordinate q specifies the distance from 
the origin to a reference point on the wall = 48) [151. 

Figure 1. A Bloch wall located at zWd = qij. 

Voids in the magnetic insulator act as pinning sites for the wall. For insulatom with 
Q >> 1, the attraction is due primarily to a reduction in the exchange and anisotropy energies 
which occurs when the wall sits on the void. For a void of length scale R satisfying 
lo < R < A (lo = lattice constant 5 A), located at the origin, the pinning potential seen 
by a flat Bloch wall is U(q)  = -Uosech2(q/A.) (see appendix B), where U0 = 2KVd and 
V, is the void volume. In our calculation, A = loo0 A (50 A) for walls with N 2 lo4 
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(300 < N g 3000) and U0 = 0.1 eV (1.0 x lo-’ ev). For LaGaYIG, Q = 25.2 and 
K N 2OOOerg so that for a spherical void R N 200 A (10 A). We consider two 
spherical voids located at r+ = =kQ& (L = 2120) with volumes V+ = aV- (a 2 1). They 
produce the double-well pinning potential 

When U = 1 we obtain a symmetric double-well potential (SDWP); otherwise, the wall sees 
an asymmetric double-well potential (AsDWP). For an energy E corresponding to QC there 
will be four turning points 4 < T2 < T3 < T4. We refer to the region q < ?i as the 
‘left barrier’, the region 4 < q < T2 as the ‘left well’, the region TZ < q < T-, as the 
‘central barrier’, the region T3 q < T4 as the ‘right well’, and the region Tq < q as the 
‘right barrier’. Varying the void separation L (i.e. 90) varies the depth of the wells and the 
height and width of the central barrier. It is important to realize that the well minima do 
not occur at q = &Qo/Z unless L >> A. In fact, the central barrier disappears completely 
for L x 1.3A. This can be understood as a simple consequnce of the finite thickness of 
the wall. When L x 1.31, the voids are so close together that the wall can straddle both 
voids simultaneously so that there is no barrier for the wall to move from one void to the 
other. The experimental situation envisioned is either (1) a thin film or (2) a very narrow 
wire of the magnetic insulator in which only one Bloch wall is present 181. In the thin-film 
case, only a small region (of the wall) of cross-sectional area A, is involved in tunnelling 
between the pinning sites [8]. In our analysis below, we treat the wall as if it were flat, 
whereas, for the thin-film scenario, it will in fact be curved in the vicinity of the void. 
Curvature effects will be discussed in section 5. In the case of the very thin wire, curvature 
effects are not expected to be important because of the large energy required to bend the 
wall on a length scale of the order of the cross-sectional dimension of the wire. 

A flat Bloch wall can be made to move by applying a torque along the easy axis of 
the material. For our situation this can be accomplished by inducing magnetic poles on 
the surface of the wall. This leads to an increase in the total energy of the wall due to 
the demagnetization energy produced by the surface poles interacting with the Bloch wall 
magnetization. This increase in wall energy is intexpreted as wall kinetic energy which 
allows a definition of the wall (Doring) mass IUD [U] 

Here A, is the area of the moving section of the wall, and y is the gyromagnetic ratio. We 
thus arrive at OUT wall Hamiltonian H = p2 /2M,  + U(q) .  Ineducing the dimensionless 
length x = q / h  and the energy scale S = ?i2/2Md.’, we can write the time-independent 
Schrodmger equation in the dimensionless form 

[ $- +U0 { sechz(x +xo) +asech2(x - x i ) }  + E  p = 0. 1 
Here 2.40 = Uo/S, xo = Q& and E = E/S. The dimensionless potential strength tr, is 
related to the wall size N = AwA/12 by 

where g is the electron g-factor, and p~ is the Bohr magneton. 
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3. The numerical calculation 

We begin with the calculation of EO, E1 and @o, @I for the SDWP (a = 1). In this case, the 
wavefunctions have definite parity and we can restrict ow attention to x1 < x < xz = 0. 
The boundary condition on $0 at xz is that its slope vanishes, while for @I, that it has a 
node at xz = 0. The boundary condition at x1 is that the WKB approximation applies at xi. 
This is always possible for x1 sufficiently far inside the left barrier. Thus x1 is chosen so 
that 

which requires an initial guess for the energy E. To obtain this initial guess, we locate the 
minimum xfin of the left well nnmerically for a given no and then approximate. the S D W  near 
x- by an equivalent harmonic oscillator potential. The ground-state and first-excited-state. 
energies of the oscillator provide our initial guesses for EO, El. 

We utilize a shooting algorithm [18] to solve the eigenvalue problem numerically. This 
algorithm takes initial values for @, at the boundaries x1 and y, consistent with the 
boundary conditions, and uses the Schriidinger equation to continue these boundary values 
to an interior point xf (XI  < xf < XZ) .  We will refer to the continuation from X I  to xf as 
the ‘left shot’, and that from x2 to xf as the ‘right shot’. Unfoknately, the wavefunctions 
cannot be solved for directly because for walls as large as are of interest to us, tr, is 
enormous (102 < tr, < IO”). As the wavefunctions depend exponentially on U0 inside the 
barriers, the numerical problem is unstable. For the gmund state we introduce an auxiliary 
function go(x) 

@OW = expk~(x)l .  (3) 
This transformation is well defined for the ground’ state since @o(x) # 0 for XI < x < XZ. 

Inserting (3) into the SchrGdinger equation gives 

- + - + E  +a [xch2(x + XO) + Sechz(X - X O ) ]  = 0. (4) 
dx2 

The shooting algorithm can be applied to (4). where go(xl) and dgo(xl)/dx are equal 
to the WKB exponent and its derivative at XI. At xz. we guess initially go(xz) by 
approximating @&) via WKB at the origin. The boundary condition on d@O(xz)/dx  require.^ 
dgo(xz)/dx = 0. The algorithm improves the initial guesses for EO and go&) iteratively, 
and iteration ceases when the most recent correction AE to the most recent energy E 
satisfies AE c lO-I4E. Since the first-excited-state wavefunction has a node at XZ,  thc 
transformation (3) is useless there. Instead, we define @1(x) =-sinh[g~(x)l for the right 
shot and @.I(x)  = exp[g~(x)J for the left shot. gR(X)  satisfies 

The boundary condition at xz is gR(xZ) = 0 and dgp(xz)/dx is guessed by approximating 
@ ~ ( x z )  via WKB near the origin. The left shot for gL goes through exactly as for go. 
The algorithm improves the initial guesses for E1 and dgR(xz)/dT iteratively to the same 
precision as for the ground state. 

For the A~DWP, the wavefunctions are no longer parity eigenstates. The boundary points 
are now X I R  = -x1L z 0. Numerical stability requires two fitting points x c ,  x a  inside the 
left and right wells respectively. As before xz = 0. The ‘left shot’ proceeds from X I L  to 
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xa, and the ‘right shot’ from X1R to x f ~ .  Two shots originate from XZ:  one to x a  aid the 
other to x f ~ .  As with the S D W  calculation, XIL (XIR) is chosen sufficiently far inside the left 
(right) barrier so that the WKB approximation applies there. The boundary conditions at XIL, 

x ~ R  are specified as in the SDWP calculation, only now the initial guesses for gO(X1R) and 
gl(xlR) are improvid iteratively (gO(x1L). gl(xl~) amount to choices of normalization and 
require no improvements). The algorithm iterates and tefininates under the same conditions 
as in the SDW calculation. 

4. Results and analysis 

Our results for the tunnelling gap A0 appear in tables 1 and 2 and correspond to macroscopic 
and mesoscopic walls of thickness A = lo00 A and 50 A respectively. So far we have 
assumed our system of wall and voids to be completely isolated. If a weak stray magnetic 
field Hul were present, it would produce a bias E in the gap A = A’ + E ~  This bias 
is a consequence of the Zeeman energy density -M . Hat. For an actual simy field, the 
direction of Hul is unknown and the experimentally relevant bias Z is obtained by averaging 
over this direction. It is easily shown that Z N MA,LHmt. We take Hert N G as 
indicative of the magnitude of a stray magnetic field (Ac magnetic fields of G have 
been used in measurements of the frequency-dependent magnetic susceptibility [6]). Clearly, 
a necessary condition for observable domain wall QC is A0 > Z. For N lo4, we find 
that A ,  = (1.1 x g)N), so that for LaGand for 
which M N 10 G, Z = (1.04 x K)N. Thus the bias grows with wall size N, making 
oGervation of dc more difficult fsr the larger wal!s. To proceed further, note that there 
exists a limited rahge of void separations for which A0 corresponds to QC and still satisfies 
A0 > Z. For L e L ~ n ,  *e ground-state energy is above the central barrier, while if 
L z La, A0 e Z. Let E = L, - Ldn be the size of the allowed range of void 
separations. Its vdue is given in table 1 and is obkned (for a given N )  by comparing 
A0 and L with Z. Quantum coherence will be observable only when (i) the uncertainty 
in L satisfies AL < ‘R and (ii) E >> C, where C N (2-3)10 is the coarsegraining length 
scale. One expects that AL N io and in our calculation 10 = 5 A. If either (or both) of 
these conditions is (are) not satisfied one would expect that the experimentally relevant gap 
would be an average of A0 over the appropriate lengh scale. From table 1 we see that, 
for N lo4, such an average is necessary and that any reasonable procedure gives < Z .  
Thus macroscopic Qc ( N  2 104) is not expected to be observable due to the rapid variation 
of the &nnelling gap with small changes in L and the large bias Z introduced by a stray 
magnetic field. We also see that in the case of the SDW (in the absence of dissipation), the 
conditions for observable Qc do not rule out walls with N N 102:103 (see table 2) which 
would correspond to mesoscopic quantum coherence. (Here A, = (2.67 x cmz)N, 
MD = (2.73 x 10-2Sg)N and Z is given in table 2.) We now go on to examine the effects 
of void a s m e t r y  on the case of mesbscopic QC. 

Since U0 = 2KV& the laiger the void, the more slmngiy it amddts the wall. Thus, if 
void asynhetry is sufficiently pronounced, Qc is lost because the larger void pins the wall. 
This effect can be seen by fol1,owing the ground-state energy as we inkkase a from unity 
(see table 3). Imagine a = 1 (corresponding to a SDW) and that {N, UO, i} are such that, in 
the absence of dissipation, we hive QC. Inhagine further that we increase a so that the void at 
q = Qo attracts the wall more strongly than the other void. This stronger amaction causes 
EO to decrease (i. e. become more negative) as the probability distribution in the ground 
state begins to shift towards q = Qo. As we continue to increase a, we reach a critical 

G-. 

cmz)N (and MD = (5.6 x 
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Table 1. Tunnelling gap AD; width R of range of observable void separations; central barrier 
height Ubh; and bias Z for a macroscopic BIoch wall moving in an SDWP. 

N (spins) L ~ A )  AO(KI R (A) Ubh 0 E 0 

104 1320  AB^ = 6  - 1.04 10-7 
1322 4 . 0 ~  lo'' 1.8 x 10-2 
1324 2.0 x 3.6 x 
1326 5.0 x lo-' 5.9 x 10-2 

1319 1.8 x lo-' 3.0 1 0 4  
1320 9.6 x W6 6.7 10-3 
1321 2.0 x 1.2 x 10-2 

106 1317 AB 2 1  - 1.04 10-5 
1318 2.4 x 7.9 x lo-' 
1319 9.1 x 3.0 10-3 
1320 c 7.2 x 6.7 10-3 

107 1317.2 AB < 0.1 - 1.04 x w4 
1317.3 2.0 x lo-' 8.5 x io@ 
1317.4 8.2 x 1.4 10-4 
1317.6 4.0 x lo-' 3.0 10-4 
1318.0 2.2 x lo-" 7.9 io-' 

io5 1318 AB 2 2  - 1.04 x 

a AB = ground state abave barrier. 

Table 2. Tunnelling gap AD; width R of range of observable void qarations; central M e r  
height ubb; and bias Z for a mesosmpic Blwh wall moving in ad SDWP. 

300 74 AB* 230 - 5.2 x 10-~ 
75 1.1 ~ 1 0 - 3  3.3 10-3 
80 2 . 5 ~  10-4 7.2 10-3 
io3 7.7x 10-9 3.2 x 16-' 
110 2.4 x 4.0 x lo-' 
120 1.8 x IO-" 5.2 x lo-' 

3WO 69~ AB 210 - 4.3 x 10'8 
75 3.1~10-~ 3.3 io-' 
so 6.1 10-9 7.2 10-3 

a AB = ground state above barrier. 

value a. at which EO is equal to the value of the A s D w  at the metastable m i n i "  of the 
left well U-. For a > a,, EO +ps below the metastable minimum which corresponds 
to the pinning of the wall at 4 = Qo and the destruction of QC. Intuitively, we expect that 
when AUO = U$ -U; = (a - 1)U; is approximately equal to the barrier height U a  of the 
SDWP, the larger void will pin the wall. For mesoscopic walls, U& is given in table 2. For 
N = 300, L = 75 A; Ubh = 2.8 x 10-7 ev (note the difference in units relative to table 2). 
Thus AU, = Ubh corresponds to K % 1.008. A numerical calculation of EO for this case 
gives a, = 1.038 K (see table 3). For the spherical voids we have been considering, 
if R- = 10 A, then R+ = aff3R- = 10.1 A. Thus if asymmetry is not to destroy QC, 
the radii of the two voids must satisfy AR = R+ - R- < 0.1 A. Such a tolerance is 
clearly unattainable and since AR << C we must average the effects of asymmetry over the 
coarse-graining length scale C 2: 10-15 A. As the majority of AR values entering into the 
average correspond to pinning of the wall, we conclude that asymmetry in the voids acts to 
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destroy Qc in this case. We might hope to overcome this difficulty by increasing L and so 
increasing U,. For L = 103 A, N = 300, the S D W  tunnelling gap is A0 = 7.7 x K 
(see table 2). At this separation, QC is marginally observable in the absence of dissipation. 
In this case ubh = 2.8 x eV (see table 2). Then AUo = &h gives ii; = 1.085. 
We did not determine a* numerically for this case. In the previous example we saw that 
(a\ - 1) N 5 6  - 1) so we will estimate (a. - 1) N 1 0 6  - 1) for this case. .This gives 
a, N 1.85. For R- = 10 A, AR N 2.3 A. Again AR < C so that an average of the effects 
of asymmetry over C cz 10-15 A is necessary. As in the previous case, the majority of the 
AR values correspond to pinning of the wall so that we again conclude that asymmetry in 
the voids will act to destroy QC in this already marginal case. Larger values of L lead to 
A0 < Z. We see that asymmetry of the voids will be sufficient to destroy any remaining 
vestige of domain wall QC-even in the absence of dissipation. The basic difficulty is that 
maximizing the tunnelling gap requires a very small central barrier: so small, in fact, that 
the most minute asymmetry in the two voids produces a bias in the double well which is of 
order of the height of the central barrier and so capable of pinning the wall (i.e. destroying 
QC). We suspect that this is generally true of macroscopic QC: large objects require small 
barriers which are easily removed by small imprfections in the experimental set-up. 

”able 3. Asymneny parameter a; goand-state energy Eo; metastable minimum U=,,, Of hrDw; 

and barrier height U& for a mesoscapic Bloch wall with N = 300 and void sepmfion L = 75 
A. 
n Eo (K) U m m  (K) ubh 

Loo0 -1.4638 x IOT1- -1.48S9 x IO-1 3.33 x IO5 
1.010 -1.4719 x IO-’ -1.4894 x IO-’ 2.96 x 10” 
1.020 -1.4814 x IO-’ -1.4930 x IO-’ 2.59 x IO-’ 
1.030 -1.4914 x IO-’ -1.4966 x IO-’ 2.23 x IO” 
1.038 -1.4997 x IO-‘ -1.4995 x IO-’ 1.94 x 

5. Summary and dosing remarks 

In this paper we have carried out a numerical analysis of domain wall quantum coherence 
in a uniaxial magnetic insulator with quality factor Q >> 1 at T = 0. We find that 
QC on any scale larger than microscopic appears unlikely due to the combined effects 
of stray magnetic fields and asymmetry in the voids which are responsible for producing 
the doublewell potential seen by the domain wall. Our calculation assumed a flat wall 
although curved walls are expected in the vicinity of the voids in the thin-film scenario. 
For this scenario, and for voids of given size, tunnelling will only occur if L .c Ldt when 
curvature effects are included [8]. This is because the curvature energy acts to raise the 
minima of the DW relative to the top of the central barrier, thus reducing ubh. When 
L = L&t, the central barrier has disappeared and we are no longer in the Qc regime. If 
L&t > L,, the tunnelling gap becomes unobservable before curvature effects become 
significant. Otherwise, Ldt  < L, and curvature effects act to reduce the range of void 
separation R + ‘7LW = - Ldn corresponding to QC. For macro-walls, R was already 
small enough to rule out  macro-^^ so that decreasing R + ;%, acts to strengthen this 
conclusion. For mesc-walls, if G, < C, then curvature effects have reduced the range 
of QC sufficiently that stray magnetic fields are expected to make meso-QC unobservable. 
Finally, if > C, asymmetry in the void sizes can more easily destroy meso-QC since 
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curvature effects act to reduce Ubj,. Thus curvature effects are not expected to modify our 
conclusion that observation of meso- or macro-QC of domain walls appears unlikely. It 
should be noted that the phase coherences necessary for establishing quantum coherence 
are much more delicate than those necessary for establishing quantum tunnelling so that OUT 
work does not preclude apriori the possibility of observing macroscopic quantum tunnelling 
of domain walls in magnetic insulators. 
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Appendix A. Muence of a void on BIoch wall structore 

The aim of this appendix is to introduce a calculational scheme allowing us to determine 
iteratively the modification of the 180" Bloch wall structure caused by a void in a high- 
quality Q = K/2nM2 >> 1 (where K is the anisotropy constant and M is the spontaneous 
magnetization) magnetic insulator in which the wall is present. We will see that for a 
sufficiently small void (see below) in such a material, the Bloch wall structure is not 
significantly modified outside the void. 

The system of interest is a lattice of spins (with lattice constant b) coupled to each 
other via the exchange and dipole4ipole interactions; and to the underlying lattice via the 
magnetic anisotropy interaction which is assumed to be uniaxial with easy axis along 2. 
For the length scales of interest to us the lattice system can be coarse-gained so that the 
magnetic state of the system is described by a magnetization M(x, t)  defined on a 3D 
spatial continuum. The total static energy for this system is given by 

J ( a i k j ) '  -t K(kj i- &f;) - - M .  H d  (AU 2 l l  

where 

Here J is the exchange stiffness constant, K is the anisotropy constant, V is the volume 
occupied by the magnetic system and S = aV is the boundary of V with outward normal 
e'; and repeated indices are summed over. Hd is the demagnetization field produced 
by M(z,  t) and the last term in (Al), referred to as the demagnetization energy, is a 
consequence of the dipole-dipole interaction. 

The flat Bloch wall is a static, smoothly varying configuration of M ( z )  that interpolates 
between two regions (domains) of uniform (and distinct) magnetization. A 180" Bloch wall 
(to which we restrict ourselves) is an extremum of the total static energy (Al) with vanishing 
demagnetization energy satisfying the boundary conditions 

(A3) 

We further restrict ourselves to high-quality (Q = K/%M' >> 1) magnetic insulators so 
that the low-energy wall dynamics is describable in terms of a moving flat Bloch wall with 

M ( y  -+ +CO) = * M i .  
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wall coordinate q(t) = q(t)e and angle @ giving the azimuthal angle in the xy-plane of M 
[I5]. For an infinite medium, the Blcch wall magnetization is [l] 

WCO) sech (CY - &)]/A) . (A4) 

Here A = is the Bloch wall thickness, CO = 2nyA.M rr 102 cm s-l is the Walker 
velocity (y  is the gyromagnetic ratio), and q c CO. It is clear from (A4) that a static Blcch 

hagine  introducing a void of volume v d  into a high-Q magnetic insulator such as 
LaGanc. This will modify the magnetization M ( z )  outside the void because a distribution 
of magnetic ‘charge’ (U = M .?L) is induced on the surface of the void s d .  This induced 
magnetic charge produces a demagnetization field outside the void which is responsible for 
the modification M I @ )  in the Bloch wall magnetization A&&), 

(A5) 

Since Q >> 1, the exchange and magnetic anisotropy energies dominate the demagnetization 
energy so that one expects that if the void is not too large, IM1(z)I << IMw(z)l. If 
R is the length scale of the void and A is the wall thickness, we expect that when 
R << A, IMl(z)I << lMw(z)l. We will say that the void is ‘sufficiently small’ when 
this condition is satisfied. Note that R >> lo, where 10 is the lattice constant, if the coarse- 
graining approximation is to be meaningful. We also assume a smooth void surface so that 
singularities in the induced magnetic surface charge will not occur. We thus assume the 
following conditions to be satisfied: (i) Q >> 1; (U) 20 < R < A ;  and (ai) the void surface 
s d  is smooth. 

Although the void is not expected to be spherical in general, we will make the 
approximation that the actual void can be replaced by a spherical void of radius RO << A 
such that AV = v d  - vsph << v d ,  where K,h = 4 ~ R i / 3 .  COITdOnS to OUT spherical 
approximation wiU arise from (i) the regions of v d  that lie outside Vse and (ii) the regions 
of Vsph that lie outside v d .  We will see at the end of this appendix that such corrections are 
negligible when AV << v d .  

When Q >> 1, the dynamical wall structure is due primarily to the exchange and 
magnetic anisotropy energies. Dynamic reaction forces and magnetostatic forces lead to 
small perturbations in the s tn~ctm determined by exchange and anisotropy [15]. A 
Bloch wall whose normal lies along the y-axis (with easy axis along the z-axis) and 
whose magnetization is specified by the angles (0 = e(y), @ = @(y)) via M(z)  = 
M(sin0cos~,sin0sin@,cos0), has a total static energy density w given by 

1 ( tanh ([Y - q(t) l /A) 

(1 - liZ/8c:) ([Y - q(t)l/A) 
M,(z, t )  = M 

wall has H d  = 0. 

M ( z )  = Mw(z) + MI(Z). 

w = w w , , + w ~ ~ + O ( Q - ’ ) =  J [ ( ~ ) z + ( s i n 8 ~ ) z ] + K s i n 2 0 + O ( Q - 1 ) .  (A6) 

Requiring that the total static energy E = d3x w ( z )  be stationary against small variations 
leads to the Euler-Lagrange equations 

2 J - -  K + J  - s i n 2 8 = 0 .  
ay2 ( (3) 
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The Bloch wall configuration (&, &) @?en in (A4) corresponds to the soiution of (A8) 
satisfyiiig the boundary conditions 

Intrducing a spherical void of h i u s  ,Ro at the origin leaas to modifi&tion of the Euler- 
Lagang'equations which must be solved to obtain the modified Blbch wall structure. As 
Ro -=x 1; we require e, 4 to be constant on & @e. i%f does not v@ on &). our re-g 
boundary condition is that M(z)  i. Mw(z) as Is1 4 bo. 

@O)) = (Ow, &) outside the void 
(i.e. *(') = Mw outside the void). This leads to induced magnetic charges on ,& as 
described above that produce a demagnetization field H d .  This field interacts with the 
modified magnetization U(') = + SM(O) ~= M&(') 'via the demagnetization energy 
whose density is w& = -M(') . &/i. The strategy is to obtain new Euler-Lagrange 
equations whose solution 

We ,determine M(z). iteratively. We assume 

e(')@, yj  = e(o)(y) +Se(o)(p,  y )  = e& +m(o)(p; j )  
(A 10) 

will determine the lowest-order c o d o n  to the Bloch wall &cture. In (A10) we have 
adopted cylindrical coordinates ( p . a .  y). where @.a) are pol& coordinates for the xz- 
plane. As e('), 4(') now depend on p ,  the exchange energy density is modified to 

4(%. Y) = 4 O ) ( Y )  + 6 d 0 ) ( P .  Y) = Ap, + S4(0) (P,  Y )  

. .  . 

The total static energy density in the presence of the spherical void becomes 

w = G m  + wanis + w-. '312) 

In appendix B we show that when M = I d o ) ,  the demagnetization field Hd corresponds 
to a dipole field 

where . .  & M(O)(O)/M. Th+ gives a demagnetization energy density 

(A14) 

The new Euk~-Lagrange equations arising from (A12) are 
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Inserting (AIO) into (A16) and keeping terms only to first order in small quantities gives 
(recall J = KA') 

As expected, the 'source ten"  on the RHS of (A16) vanish as v d  -+ 0 so that iVf -+ ikf, 
in thii limit. Also, since Q-' < 1, the source terms are small so that and S@Co) will 
be small. 

Assuming we have obtained solutions to (Ale), we proceed iteratively. Our initial guess 
= e,, @(O) = @w has now been corrected to e(') = 0, + = QIx + S@(O). This 

yields an improved magnetization M(') = Mw + 6Mto). We then use M(') to obtain the 
corrections to the demagnetization energy which then modify the Euler-Lagrange equations. 
Writing e(') = e(') +SO('); +@) = @(I) +84(') we solve the new Euler-Lagrange equations 
for SO('),  S4('). Having done so, one can repeat the procedure until the physically relevant 
degree of accuracy is achieved. 

The above calculation assumed a spherical void. For a non-spherical void, we assume 
S d  is sufficiently well behaved so that we can find a 'best' sphere of radius Ro such that 
0 < v d  - 4 r R ; / 3  << vd. We have Seen that the spherical void produces a demagnetization 
field that is dipolar in character. It is clear that corrections to this dipole field will come from 
(i) the region of v d  lying outside the 'best' sphere and (U) the region of the 'best' sphere 
lying outside vd, and that these regions wiu lead to higher multipole moment corrections 
to the dipole field. It is also clear that the relative strength of the contribution to H d  from 
a multipole moment of order 1 to the dipole contribution will be of order 

which is manifestly negligible outside the void when Vd - V,h << vd. In such cases it 
should be adequate to approximate the void by the 'hest' spherical void. 

Thus for the type of voids to which we have restricted ourselves in this paper (e-' << 1; 
lo << RO << I; smooth void surface), we see that corrections to the Bloch wall structure 
(A4) produced by the presence of the void will be small. Thus we make the approximation 
M(z)  = M,(z) (outside the void) in our calcdation of the pinning potential given in 
appendix B. 

Appendix B. Calculation of the pinning potential 

In this appendix we will calculate the pinning potential acting on a Bloch wall at q c  due to a 
spherical void of radius RO centred on the origin. Our result U ( q )  = -U0 sech2(q/A), where 
A is the wall thickness, reproduces the functional form of the pinning potential obtained by 
Stamp 171, although we obtain a different result for the potential strength UO. The pinning 
potential is the difference in the total static energy of the wall for the two cases in which 
the void is and is not present. We assume Io << Ro < A (see appendix A) and that the 
wall plane is parallel to the x z  plane. We further assume that the Bloch wall is present in a 
high-quality (Q >> 1) magnetic insulator so that, as seen in appendix A, the magnetization 
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outside the void does not significantly deviate from the Blcch wall form. Thus we take 

and M,(x) is the Bloch wall magnetization (A4) of a wall at 42. For convenience, we 
assume q = 0. The pinning potential receives contributions from the exchange, magnetic 
anisotropy, and demagnetization energies 

(B2) 
We begin with the exchange contribution to U(q).  Let R3 - Vd denote the region outside 

u(q) = Ue&) f UerZs(q) f Udemagh). 

the void. Then 

and h = Mw/M. Shp le  algebra gives 

For a Bloch wall, J = KA’ has been used and since 1x1 < RO << A, we can expand the 
hyperbolic functions to lowest order in y/A 

= - KVd sech’(q/A) f 0(KVd(Ro/A)’). (B5) 
Let the easy axis for the magnetic anisotropy lie along the z-axis. Then 

= - KVdSeCb*(q/h) + 0(Kvd(&/A)2). (B6) 
The contribution from the demagnetization energy requires a little more work. As 

discussed in appendix A, the void has a magnetic ‘charge’ induced on its surface & which 
produces a demagnetization field Hd outside the void. This gives rise to a demagnetization 
energy 

E h g  = -- -vd d3x M w .  H d .  (B7) :sa 
As the static Bloch wall configuration (appropriate when the void is absent) has zero 
demagnetization energy, we have 

Uemg(q) -- -vd d3x Mw * H d .  (W :sd 
The demagnetization field H .  satisfies 

v x H d  = 0 V*(& +4xMw) = 0 

subject to the boundary condition that I&(=)[ 3 0 as IzI + CO. The solution is 
H d  = -V@d, where 

. (B9) 
A’ * Mw(d)  da’ v Mw(x’) -l -Vd d3x 

@ d = i  12 - 2’1 12 - 5‘1 
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Here S = S, U Sd. For & < A ,  Mw is constant over s d  and given by 

Mw(0) = M(sWh(q/A), 0, - tanh(q/A)) 3 M h .  

Using (B10) in @9) and expanding 11 - 1’1-l in spherical harmonics gives 

( B W  

so that 

Hd = - Mvd [h - 3&(h * &)I. (Bm r3 

We see that H d  is a pure dipole field outside the void. S i p l e  algebra gives 

M, H d  = (M2Vd/r3) [(3z2/r2 - l)tanh(q/A)tanh 
x ((Y - W.)+ (1 - 3x2/r2) sech(q/Ns=h ((Y - d / A )  
+(3xz/r2) (tanh(q/ABech ((Y - 4)P.I 
-SWq/A) tanh ((Y - q ) / A ) } ] .  ~ 1 3 )  

To evaluate the integral in @8) it proves convenient to adopt cylindrical coordinates 
( p ,  a, y). Here ( p ,  a) are polar coordinates for the xz-plane. The a-integal of the term in 
(B13) proportional to xz/r2 vanishes and will be dropped from further consideration. Thus 

where 

The a-integral is hivial and the p2-integrd can be done by parts. Carrying out these 
integrations gives 
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Since IyI Q RO << A, we expand the hyperbolic functions to second order in (y/A). This 
gives 

- -  - KQ-’Vd[ --+- 4 4 (Ro)>”( - 
4 3 15 A 

We see that the leading term is constant and does not contribute to the pinning force. What 
is more., the overall magnitude of U , g  is proportional to e-’ << 1 so that it is small 
compared to U,, and U d s  and will not contribute significantly to U(q) .  Thus 

U ( q )  U,, + U- = -2KVd sech2(q/A) -U0 sech2(q/A) (BW 
where UO = 2KVd. If, for example, we assume U0 0.1 eV, and that our magnetic 
insulator is Lack” ,  so that Q = 25.2, and K N 2000-3000 erg ~ m - ~ ,  then Ro N 15& 
200 A, which gives the value used in the macroscopic domain wall calculation. Similiar 
algebra using the appropriate value of U0 (see section 2) yields the value of & used in the 
mesoscopic domain wall calculation. 
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